Travel Through Data From Space in New 3D Instagram Experiences

18 Apr 2024

 

  • A set of new augmented reality (AR) “experiences” lets users travel virtually through cosmic objects in 3D.
  • The 3D models are based on data from NASA’s Chandra X-ray Observatory and other telescopes.
  • This is the first time that sonifications (translations of data into sound) are being incorporated into Instagram AR experiences.
  • This release helps celebrate the upcoming Chandra 25th anniversary of operations and continues the goal of expanded accessibility of its data.

 

These images represent new special 3D “experiences” available on Instagram made with data from NASA’s Chandra X-ray Observatory and other telescopes. By using augmented reality (AR), these experiences allow people to travel virtually through objects in space.

These Chandra Instagram experiences join a space-themed collection in Instagram from recent years, that includes NASA mission control, the International Space Station, and the Perseverance Rover on Mars. The objects in the new Chandra Instagram collection include the Tycho supernova remnant, the Vela Pulsar, the Helix Nebula, the Cat’s Eye, and the Chandra spacecraft.

The new Instagram experiences are created from 3D models based on data collected by Chandra and other telescopes along with computer models. Traditionally, it has been very difficult to gather 3D data of objects in space due to their two-dimensional projection on the sky. New instruments and techniques, however, have allowed astronomers in recent years to construct data-driven models of what these distant objects look like in three dimensions.

These advancements in astronomy have paralleled the explosion of opportunities in virtual, extended, and augmented reality. Such technologies provide virtual digital experiences, which now extend beyond Earth and into the cosmos.

This new set of Chandra Instagram experiences was made possible by a collaboration including NASA and the Smithsonian Institution, as well as students and researchers at Brown University. The 3D models of Tycho, Vela and Helix were done in conjunction with Sal Orlando, an astrophysicist at Italy’s National Institute for Astrophysics in Palermo. The Cat’s Eye Nebula was created with data from Ryan Clairmont, physics researcher and undergraduate at Stanford University. Kim Arcand from SAO oversaw the project and worked with Brown University’s Tom Sgouros and his team, research assistant Alexander Dupuis and undergraduate Healey Koch, on the Chandra Instagram filters.

 

[Image]

(A) Vela Pulsar:

The Vela Pulsar is the aftermath of a star that collapsed, followed by an explosion that sent a remarkable storm of particles and energy into space. The Chandra X-ray Observatory and other telescopes captured this storm, seen here as a 3D model. At the center of Vela is a pulsar, a rapidly spinning dense star that sends beams of light out into space like a cosmic lighthouse.

(B) Tycho's Supernova Remnant:

Massive stars die in giant explosions called supernovas that can outshine an entire galaxy. After a supernova explosion, the remains of the star can become a spectacular and evolving cosmic monument to the now-deceased star. These remnants glow in X-ray light, which NASA’s Chandra X-ray Observatory can detect such as in this image of Tycho’s Supernova Remnant. 

(C) Helix Nebula:

In about 5 billion years, our Sun will run out of fuel and expand, possibly engulfing Earth. These end stages of a star’s life can be utterly beautiful as is the case with this planetary nebula called the Helix Nebula. Astronomers study these objects by looking at all kinds of light, including X-rays that the Chandra X-ray Observatory sees.

(D) Cat's Eye Nebula:

Eventually, our Sun will run out of fuel and die (though not for about another 5 billion years). As it does, it will become like the object seen here, the Cat’s Eye Nebula, which is a planetary nebula. A fast wind from the remaining stellar core rams into the ejected atmosphere and pushes it outward, creating wispy structures seen in X-rays by Chandra and optical light by the Hubble Space Telescope.

 

source: 
Center for Astrophysics, Harvard & Smithsonian